• ### F.1. Electric Forces and Fields

3. #### F.1.1. Introduction to Electric Forces

1. F.1.1.O. Overview
2. F.1.1.1. Determining whether two charges attract or repel each other using the law of charges
3. F.1.1.2. Recognizing that electric charge is conserved
4. #### F.1.2. Separation and Transfer of Charge

1. F.1.2.O. Overview
2. F.1.2.2. Identifying examples of induction
3. F.1.2.3. Identifying examples of conduction

7. #### F.1.5. Electrical Potential

1. F.1.5.O. Overview
2. F.1.5.1. Solving problems involving the electric potential (V) using the equation ΔV = ΔUE/q
• Add a specific skill individually
• ### F.2. Direct Current Circuits

3. #### F.2.1. Circuit Diagrams

1. F.2.1.O. Overview
2. F.2.1.2. Identifying the following circuit components: batteries, resistors, and switches
3. F.2.1.3. Distinguishing between series and parallel circuits
4. #### F.2.2. Basic Ohm’s Law Problems

1. F.2.2.O. Overview
2. F.2.2.2. Solving Ohm’s Law word problems using the equation V = IR
5. #### F.2.3. Power

1. F.2.3.O. Overview
2. F.2.3.1. Solving problems involving power using the equation P = VI
3. F.2.3.2. Solving problems involving power using Ohm’s law and the equation P = IV
6. #### F.2.4. Ohm’s Law Problems for Series Circuits

1. F.2.4.O. Overview
2. F.2.4.4. Determining the total power and the power of specific resistors in a series circuit
7. #### F.2.5. Ohm’s Law Problems for Parallel Circuits

1. F.2.5.O. Overview
2. F.2.5.4. Determining the total power and the power of specific resistors in a parallel circuit
8. #### F.2.6. Ohm’s Law Problems for Complex Circuits

1. F.2.6.O. Overview
2. F.2.6.4. Determining the total power and the power of specific resistors in a complex circuit
• Add a specific skill individually
• ### F.3. Capacitors , Dielectrics and RC Circuits

3. #### F.3.1. Capacitance

1. F.3.1.O. Overview
2. F.3.1.1. Solving problems involving the capacitance of any capacitor using the equation C = Q/ΔV

5. #### F.3.3. RC Circuits 2: Capacitors in Parallel

1. F.3.3.O. Overview
6. #### F.3.4. RC Circuits 3: Capacitors in Complex Circuits

1. F.3.4.O. Overview
7. #### F.3.5. Dielectrics

1. F.3.5.O. Overview
• Add a specific skill individually
• ### F.4. Magnetic Forces and Fields

3. #### F.4.1. Introduction to Magnetism

1. F.4.1.O. Overview
2. F.4.1.2. Identifying the correct lines of flux (magnetic field lines) for a magnetic field
4. #### F.4.2. Magnetic Fields Produced by a Current-Carrying Wires

1. F.4.2.O. Overview
5. #### F.4.3. First Right-Hand Rule: Direction of Magnetic Fields and Currents

1. F.4.3.O. Overview
6. #### F.4.4. Magnetic Forces on Moving Charges

1. F.4.4.O. Overview
7. #### F.4.5. Magnetic Forces on Current-Carrying Wires

1. F.4.5.O. Overview
8. #### F.4.6. Second Right-Hand Rule: Direction of Magnetic Forces

1. F.4.6.O. Overview
• Add a specific skill individually
• ### F.5. Electromagnetic Induction

3. #### F.5.1. Introduction to Electromagnetic Induction

1. F.5.1.O. Overview
2. F.5.1.1. Determining whether or not a current will be induced in a circuit given a scenario
4. #### F.5.2. Motional EMF

1. F.5.2.O. Overview
2. F.5.2.2. Solving problems involving motional emf using the equation emf = vBl
5. #### F.5.3. Faraday’s Law: Magnitude of Induced Current

1. F.5.3.O. Overview
2. F.5.3.1. Determining the magnetic flux through a circuit using the equation ΦB = ABcosθ
3. F.5.3.3. Determining the magnitude of induced current using the equation I = emf / R
6. #### F.5.4. Lenz’s Law: Direction of the Induced Current

1. F.5.4.O. Overview
2. F.5.4.1. Determining the direction of induced current by applying Lenz’s law
• Add a specific skill individually
Expand a Unit to view specific Skills
Add all of the Skills in a Unit